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The Microbubble Implosion (MBI)

In Microbubble Implosion, a target with a spherical cavity is irradiated by an intense
laser which heats the electrons. Once the electrons are heated, they start to fill the cavity
and initiate the implosion of ions close to the cavity wall

The laser intensity: I > 1018W /cm?

The dimension of the target radius: R < 1um

The ion density at maximum compression: p > 103Y jons/m3
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Features of the MBI Potential challenges and

approach aspects to enlighten

It’s still a theorical phenomenon
@ which needs to be confirmed
experimentally;

Since it’s required to heat just
electrons with a fs laser it 1s not
required the adoption of high

energy lasers;

The plasma regime under
consideration has been
investigated for astrophysical

research;

symmetric allowing for an
i1sotropic implosion;

@ The system is intrisically highly

The conditions for the existence of

’ The working principle of MBI this plasma can be maintained for a
R may reduce Bremmsstrhalung very limited time window—
losses; tens of fs;
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EPOCH 2D simulations setup

* Domain: 3 pm x 3 um Wavelength: 0.854 pm

* Mesh: 200x200 Spot size: 3 um

FWHM: 30 fs

Intensity: 1017to 10%2 W/cm?

* Outer radius: 1 um * Boron thickness: 0.2 um

* Gold thickness: 0.2 um * Hydrogen thickness: 0.2 um

* Cavity radius: 0.4 um



EPOCH 2D mesh || ||
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LASER INTENSITY SCALING
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* A parametric analysis with respect to the

) ) ) A figure of merit called Synch Action
laser intensity has been carried out

has been introduced:

ma [)) ma I
[t appears clear that the relative distance Si(D) = X('D H( )) )

H _ BO
between pB implosion time increases as the abs (Eimy ) Limp (1)
intensity decreases
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IMPL()SION DISPLACEMENT
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MBI HEATMAPS
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Hydrodynamic simula




Pre-pulse eftect via FLASH
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Conclusions

The EPOCH code results for MBI needs In the near future the best would be to use
to be interpreted as general trend the EPOCH outputs after the laser
behaviour irradiation as inputs of a 3D MD code
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Backup slides




Gold effective ionization
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Which is the lower limit for the intensity?

I =10YW /cm?
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Electrons heatmap

I = 10%1W /cm?
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Bremmstrhalung losses
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Why MBI is interesting In the case
of pB nuclear fusion(1)

As we know these losses Bremmstrhalung losses are
One of the most scales as the Z2 of the mitigated thanks to design
problematic aspect of pB11 plasma, therefore a pB11 of the target also. They may
fusion is about plasma will be subject to actually be beneficial for the
Bremmstrhalung losses; losses which are 25 times compression and
higher than DT plasmas; confinement;

The MBI concept is founded

As mentioned in [5], the on a non equilibrium
possibility of having a non condition between ions and
equilibrium burning plasma electrons. The MBI is what

may help in this respect; happens to ions trying to

reach the equilibrium;

[5]: T.A. Mehlhorn et all, https://doi.org/10.1155/2022/2355629 22



About the MBI
proposition (2)

In this picture, you can observe the
effect of this compression;

The electric field reported on the y-axis
is the field generated by protons while
compressed to such high densities, in
the order of 1028 — 102° particles/cm3;
The possibility to exploit this
phenomenon is very interesting for
nuclear fusion too!
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Coulomb explosion (CE) vs MBI

CE is a phenomenon which share with MBI some basic ideas;

Thanks to the irradiation of a solid sphere by a HIL there will be an
explosion as consequence of the coulomb repulsion between ions

which have been ionized

The condition for achieving CE is:

I, A\ & ¥nio [ Ro . )
1018W /em? \1um 50nm \ 50nm [6]

[6]: M.Murakami, K. Mima,
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Quantum plasmas in nuclear fusion
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In the case of proton-boron fusion,
it’s required a higher energy with
respect to the deuterium-tritium
case.

Moreover, protons are fermions
therefore subject to the Pauli’s
principle.

For what concerns the DT
fusion, quantum effects may
play a major role and therefore
we need a more time to
address this point
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