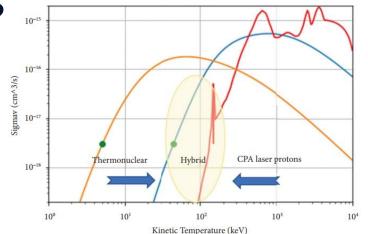
5th International Workshop on Proton-Boron Fusion Belgrade 2025

September 8, 2025

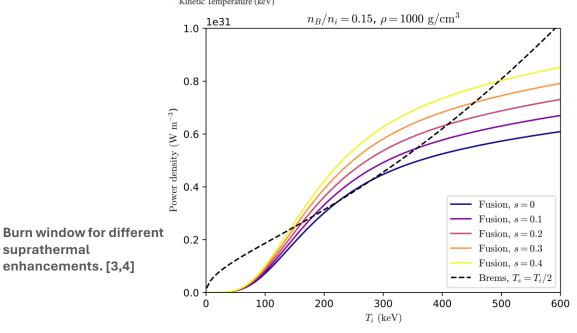
Monte Carlo Simulations of Suprathermal Enhancement in Advanced Nuclear Fusion Fuels

Marcus Borscz^{1,2} marcus.borscz@hbll.energy

Patrick Burr¹, Igor Morozov², Sergey Pikuz²


¹School of Nuclear Engineering, UNSW Sydney ²HB11 Energy

Why Suprathermal Effects Matter?


- Fusion products and fast ignitor protons will slow in the bulk plasma and create non-thermal energy distributions [1].
- Up-scattering of thermal protons/injection of fast protons will increase fuel reactivity.
- Suprathermal enhancement increases the burn window where fusion power > brems losses.
- **Enhancement is critical for self-heating and burn propagation.**
- Small-angle Fokker-Planck simulations [2] suggest 10-20% effect in MCF plasmas – enhancement at ICF conditions unknown.
- Current models crudely approximate suprathermal effects using a constant reactivity multiplier.

$$P_{fus} = (1+s)Qn_1n_2\langle\sigma v\rangle V$$

Beam-catalyzed hybrid pB11 burn vs DT

Fusion reactivity for thermonuclear pB11 and DT, and beam-driven pB11.[1]

suprathermal

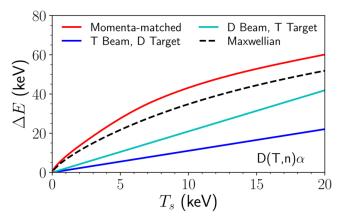
Mehlhorn et al., Laser and Particle Beams, 2022

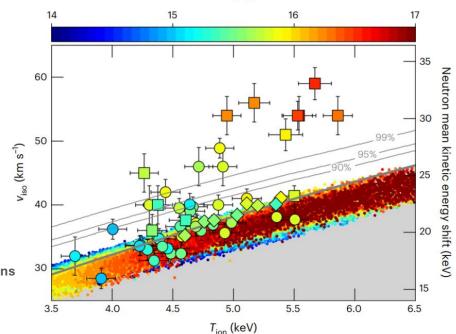
Putvinski, Ryutov & Yushmanov, Nuclear Fusion, 2019

Svensson, Astrophysical Journal, 1982

Tentori & Belloni, Nuclear Fusion, 2023

Evidence of Suprathermal Effects on NIF


Shape of particle distribution inferred from neutron spectral analysis.
 For DT:


$$\Delta E_n = rac{4}{5} \langle K_{rel}
angle + rac{1}{2} m_p \langle v_{CM}^2
angle, \quad T_i = rac{5}{3} m_p \langle v_{CM}^2
angle$$

Where a Maxwellian distribution corresponds to the 'hydrodynamic boundary'

- Departure from hydrodynamic boundary indicative of more 'momentum-matched' collisions [9] – high relative velocity, low CM velocity
- NIF burning plasma experiments [5] have observed increased neutron yield and greater neutron upshift compared to HYDRA simulations.
 - Other PIC simulations [6] have also not predicted this effect. Most are based on the Takizuka & Abe [7] (Gaussian central limit) or Nanbu [8] (cumulative small-angle) treatment of Coulomb scattering.

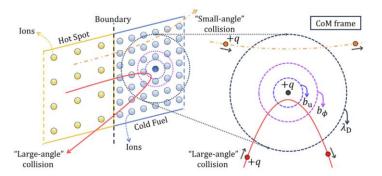
Limiting cases for neutron spectral analysis for isotropic distributions. [9]

log₁₀Y_{DT}

5] Hartouni et al., Nature Physics, 2022

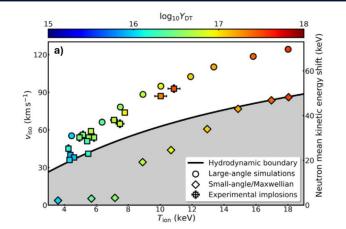
6] Sherlock & Rose, High Energy Density Physics, 2009

7] Takizuka & Abe, Journal of Computational Physics, 1977

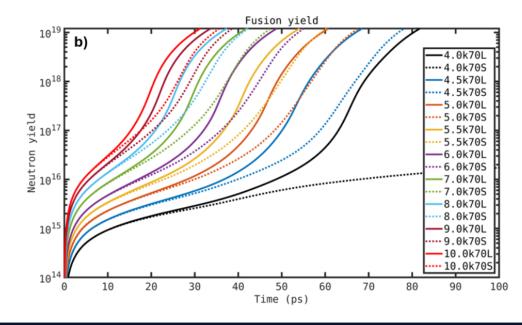

Nanbu, Physical Review E, 1997

91 Crilly et al. Nuclear Fusion, 2022

Neutron spectral analysis of NIF experiments and HYDRA simulations (2D and 3D). Squares are burning plasma shots. [9]


Large-Angle Collisions

- The LAPINS PIC code has been recently modified to include large-angle collisions [10]
 - Large-angle collisions facilitate larger energy transfer, which 'lifts' the fuel ion distribution tail as alphas slow down
 - The highly nonlinear fusion cross section favours head-on (e.g. momentummatched) collisions in this tail
- Departure from small-angle and large-angle kinetic results occurs at onset of burn-propagation - more rapid alpha deposition at the hotspot boundary expedites hotspot expansion and leads to 'cooler' burning
- Cutoff determined when potential from target greater than superposition potential from all other field species [11]

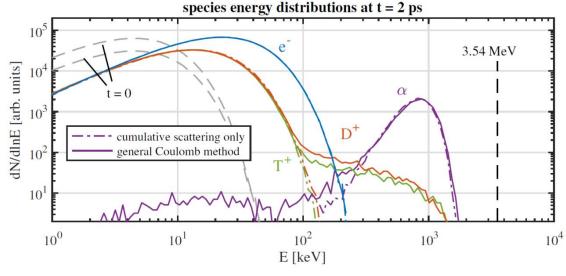

$$rac{e^{-b_\phi/\lambda_{De}}}{b_\phi/\lambda_{De}} = \sum_{m=1}^\infty rac{e^{-m^{1/3}x}}{m^{1/3}x}, \qquad x = rac{1}{\lambda_{De}}igg(rac{3}{4\pi n_s}igg)^{1/3} \ b_c = \sqrt{b_\phi(b_\phi-2b_\perp)}$$

Ion trajectories for small and largeangle collisions [11]

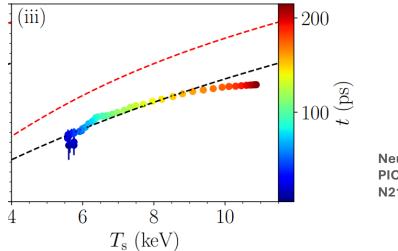
Neutron spectral analysis of LAPINS simulations plotted alongside NIF data [10]

Fusion yield for LAPINS simulations w/ and w/o large-angle scattering [10]

10] Xue, Wu & Zhang, Science Bulletin, 2025


11] Turrell, Sherlock & Rose, Journal of Computational Physics, 2015

Large-Angle Collisions


- LLNL have also started to investigate suprathermal effects with the PICNIC code [12, 13]
 - Cumulative Coulomb + large-angle Rutherford + α -D, α -T, D-T nuclear elastic scattering + anisotropic fusion
 - Coulomb sampling accounts for electron screening and quantum diffraction

$$\sin^2 \frac{\theta}{2} = \frac{b_{\perp}^2 + b_{\text{qm}}^2}{b_{\perp}^2 + \left(b + b_{\text{qm}}\right)^2}$$

- Unlike the NIF results or LAPINS, PICNIC has not observed any suprathermal enhancement
 - LAPINS samples both the small and large angle scatter, and adds them together
 - PICNIC samples either the small or large angle scatter, but truncates the large angle collision probability at 10%

Alpha slowing down in DT using the PICNIC code [12]

Neutron spectral analysis of PICNIC simulations of the N210808 NIF shot [13]

12] Angus & van de Wetering, Journal of Computational Physics, 2025

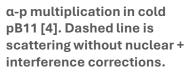
13] Van de Wetering et al. arXiv, 2025

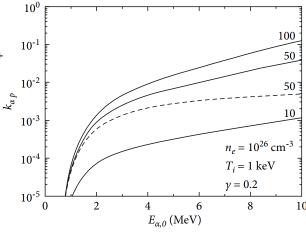
Multiplication Processes in pB11

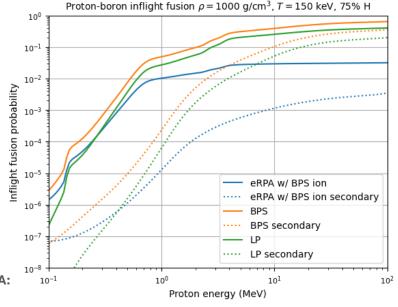
- Belyaev et al. [14] hypothesized that a chain reaction could occur via ¹¹B(α,p)¹⁴C, but this is suppressed when ionic and electronic stopping is considered [15]
- Eliezer et al. [16] proposed the α-p 'avalanche' to explain high yield shots on PALS, but the timescale to develop is longer than the TOF signal time [17]
- Belloni [18] has investigated the effects of α-p up-scattering in hot-electron pB11 to determine enhancement for cold fuel heating
 - Nuclear elastic scattering has been included
 - Increasing the multiplication factor above 1% is problematic, α-p up-scattering unlikely to make a difference at least for cold fuels
- Proton fast ignition can be particularly effective at heating pB11 due to inflight fusion and p-p up-scattering
 - 20-40% fusion probability for 10 MeV protons @ 150 keV, 1000 g/cc, including secondary fusions

[14] Belyaev et al., Laser Physics Letters, 2015

[15] Shmatov, Physics of Atomic Nuclei, 2016


[16] Eliezer et al., Physics of Plasmas, 2016

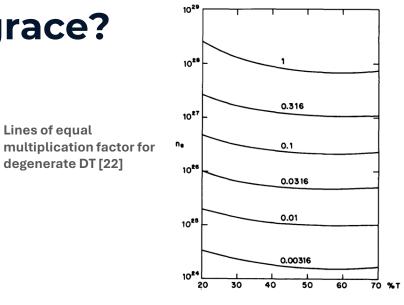

17] Belloni et al., Physics of Plasmas, 2018

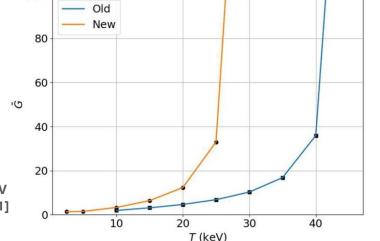

Belloni, Lasers and Particle Beams, 2022

19] Zylstra et al., Physics of Plasmas, 2019

Proton inflight fusion probability with p-p secondaries included. Strong dependence on stopping power model - LP: Li-Petrasso [19], eRPA: enhanced RPA, BPS: Brown-Preston-Singleton

Chain reactions with neutrons – a saving grace?


- Robinson published two papers on DD chain reactions in 2024, one for nondegenerate [20] and one for degenerate [21] plasmas, plus a correction to the stopping model
 - 0D Monte Carlo model that tracks neutrons, deuterons, protons, tritons and helions in an infinite, homogenous plasma
 - All D-cycle fusion reactions, D(p,n)2p, p-D elastic scattering and neutron-ion elastic scattering considered, taken from ENDF/B-VIII.0 library
 - Ions are slowed down by field ions and electrons each timestep, typical Fokker-Planck approach to stopping model [19]


$$s \approx \frac{Q_{tot} + K_{dep}}{K_{i,0}}$$

- Criticality observed for 6 MeV deuterons in DD @ 27 keV, $n_i = 1e33 / m^3$ and degenerate DD @ $n_i = 3.5e33 / m^3$
 - Criticality not possible if DT reactions are not included, neutrons are the dominant mechanism for the chain reaction
- Peres & Shvarts [21] have shown criticality in degenerate DT @ ni = 8.4e33 /m³ (using k-eigenvalue approach)

Beam gain for 6 MeV deuterons in DD [21]

Lines of equal

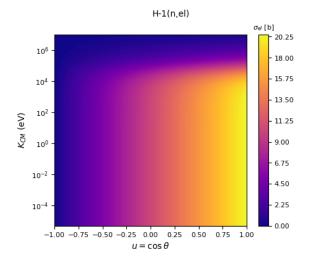
Robinson, Plasma Physics and Controlled Fusion, March 2024

Robinson, Plasma Physics and Controlled Fusion, October 2024

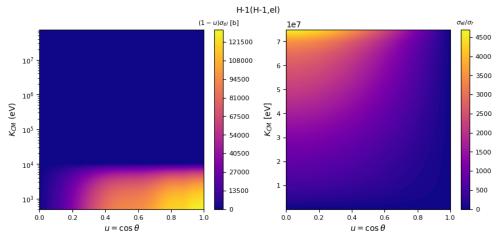
Peres & Shvarts, Nuclear Fusion, 1975

Research Question and Aims

Putvinski, Belloni and Robinson have approached studies of suprathermal effects with different methodologies (Fokker-Planck, analytic, Monte Carlo), with different fuels at different regimes. A unified approach is desirable, which addresses


To what extent does burn product transport via large-angle Coulomb scattering, nuclear elastic scattering and nuclear reactions enhance the reactivity of advanced fusion fuels at ICF-relevant conditions?

 Pure pB11 is proving very difficult to burn even with advanced technological capability. A path forward may include mixed fuels with DT or DD seeding, and so


Can fast neutrons drive a critical chain reaction in pB11 if mixed with DT or DD?

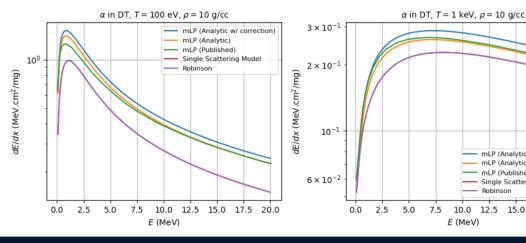
Fast Particle Tracker

- We are extending Robinson's method to track the slowing down, up-scattering and fusion of fast n, p, D, T, He-3, α and B-11 in a stationary thermal background plasma
 - Electron collisions and grazing ion collisions are approximated by the Li-Petrasso stopping power [19] instead of simulated directly as in PIC codes
 - The threshold for large-angle ion collisions is determined using the LAPINS screened Coulomb potential cutoff [11], but the angle is sampled using the method from PICNIC
 - Spin-spin coupling and particle indistinguishability have been accounted for in the elastic scattering cross sections
 - All available and relevant neutron and nuclear elastic cross sections in the ENDF database have been included
 - The pB11 alpha spectra is sampled from a first-principles analytic model [23] at the dominant 675 keV resonance
- The focus of this code is the enable fast parameter scans of advanced fuels and identify kinetic regimes of interest. Finite boundaries, hydrodynamics and particle transport will reduce the extent of suprathermal enhancement and still require PIC modelling

Cumulative crosssection for p-n scattering

Cumulative cross-section for p-p scattering, and comparison to pure Rutherford scattering

Stopping Power Model


- The Li-Petrasso [19] model is a third-order Fokker-Planck stopping power valid for $\ln \Lambda > 2$ that also includes the effects of electron degeneracy and stopping due to collective plasma oscillations
- The third-order correction (the $\frac{m_i}{m_i}$ terms) are turned off for the ion stopping in favour of MC large-angle sampling
- We note that the original authors have made a mistake in their published derivation and plots, and this has been corroborated with other stopping models

Binary collisions Stopping on plasmons $\frac{dE_i}{dx} = -\sum_i \frac{4\pi n_j}{m_i} \left(\frac{Z_i Z_j e^2}{4\pi \varepsilon_0 v_i}\right)^2 \left[G(x) \ln \Lambda + \frac{1}{\sqrt{2}x} K_0\right]$ $G(x) = \left(1 + \frac{m_j}{m_i} \frac{1}{\ln \Lambda}\right) \operatorname{Erf}(x) - \left(1 + \frac{m_j}{m_i}\right)$ where $x = v_i \sqrt{\frac{m_j}{2T_i}}$ Large-angle Fokker-Planck correction

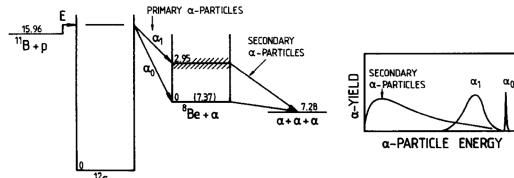
> mLP (Analytic w/ correction) mLP (Analytic)

10.0 12.5 15.0 17.5 20.0

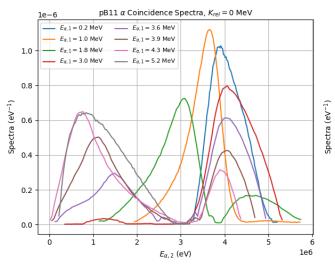
E (MeV)

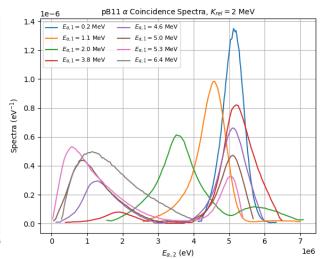
 α in DT, T = 20 keV, $\rho = 10$ g/cc mLP (Analytic w/ correction 2×10^{-1} mLP (Analytic) mLP (Published) Single Scattering Model Robinson 10^{-2} 6×10^{-3} 4×10^{-3} 3×10^{-3} 10^{-1} 10⁰ 10¹ E (MeV)

Comparison of stopping models which strongly suggests publication error

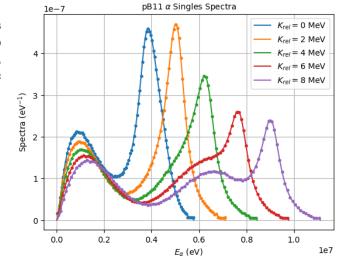


pB11 Spectra


• Quebert and Marquez [23] have provided an analytic form for the pB11 alpha spectra α_1 break-up channel

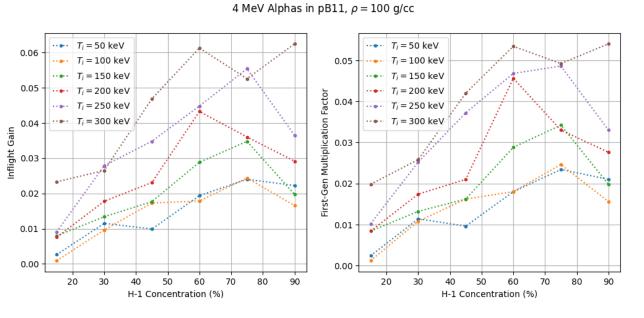

$$\frac{d^2\sigma}{dE_1dE_2} \propto |\mathcal{M}|^2$$

• We have tabulated the primary and secondary alpha spectra fir 0-20 MeV collision energies, although under the assumption tof using the 675 keV resonance parameters. Identifying the weightings of each break-up channel as a function of energy would be a welcome addition to the model.

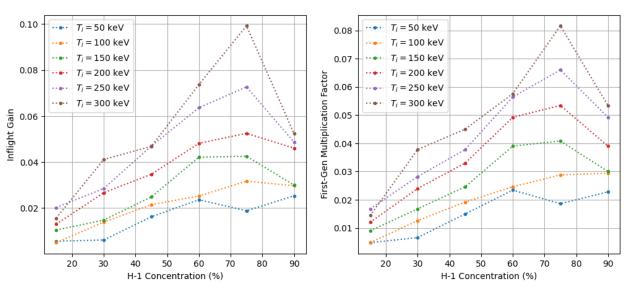


Sequential decay scheme and expected α spectrum for pB11 [24]

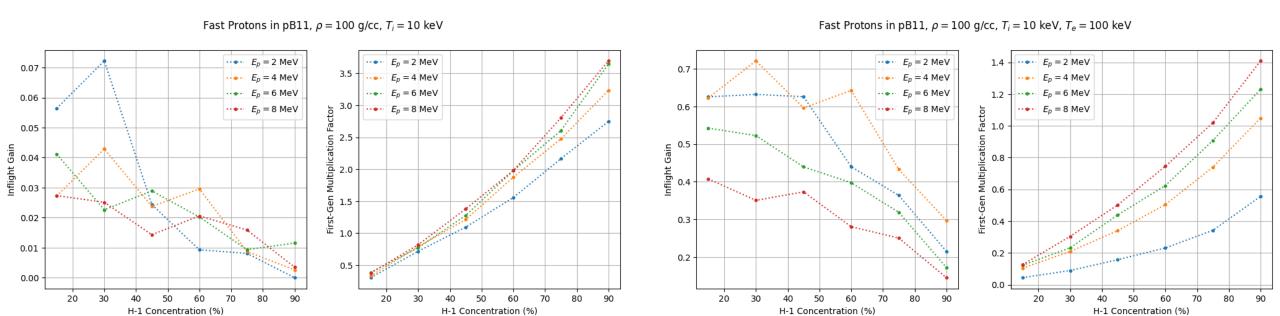
pB11 singles spectra. The dots are the result of Monte Carlo inverse transform sampling, whereas the lines are analytic



Coincidence spectra at 0 MeV and 2 MeV collision energy

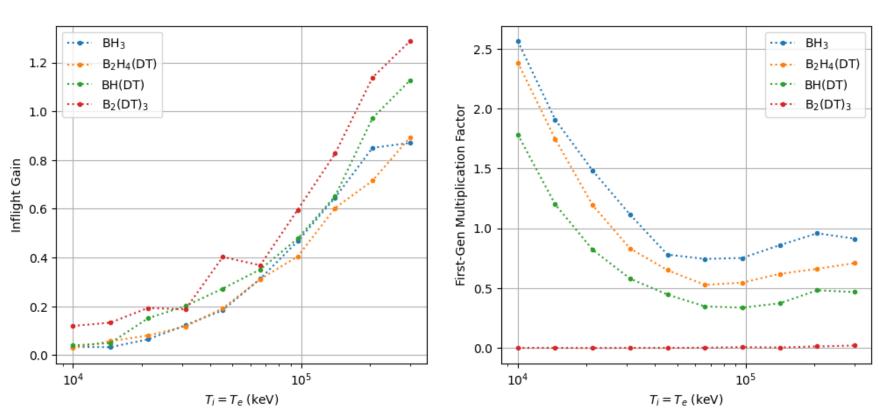

4] Becker, Rolfs, Trautvetter, Atomic Nuclei, 1987

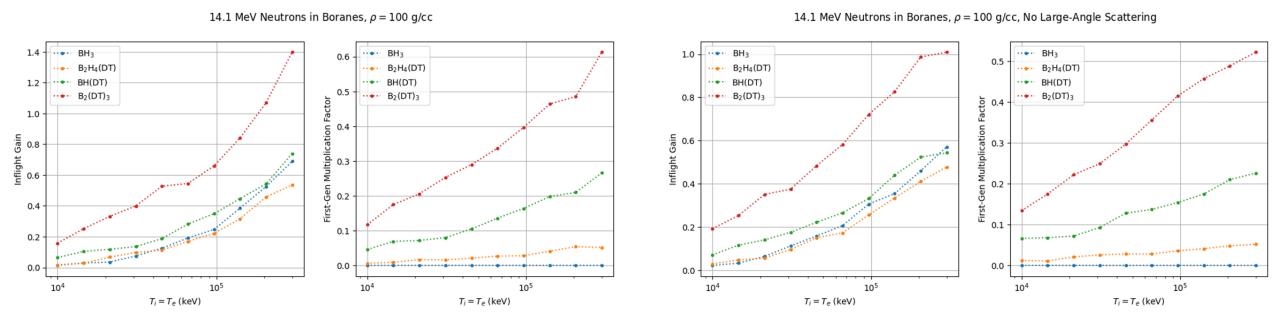
Results - Pure pB11 Suprathermal Enhancement


4 MeV Alphas in pB11, $\rho = 1000$ g/cc

- Contrary to previous modelling assumptions, suprathermal enhancement from α -p upscattering in pure B-11 contributes no more than 10%, and likely a lot less when transport is considered.
- The prospect of a charged-particle chain reaction in pure pB11 looks highly unlikely for any feasibly achievable plasma regime

$$s \approx \text{Inflight Gain} = \frac{Q_{tot} + K_{dep}}{K_{i,0}}$$


Results – Proton Fast Ignition in pure pB11


- Fast protons experience more scatter events, but with less average energy transfer, at low temperatures
- Inflight/secondary pB11 fusions only play a significant role in bulk target heating when the plasma is in 'hot electron' mode 60-70% energy multiplication
- Moreau [25] estimated the multiplication to be 20-30% at these conditions, although this was done with the old cross-section, an outdated stopping power and no consideration of large-angle/NES effects

Results – Proton Fast Ignition in Enriched Boranes

4 MeV Protons in Boranes, $\rho = 100$ g/cc

Results – Neutron Multiplication in Enriched Boranes

- Even without the inclusion of large-angle and nuclear elastic scattering, the suprathermal enhancement of mixed DT-pB11 is
 20% for Ti > 100 keV
- There is not a huge difference in this enhancement between BH3 and BH(DT) neutrons couple far better to protons to take advantage of the pB11 cross-section
- Rather than consumed as an aneutronic fuel, the real benefit of boron may be to enable non-cryogenic fuels

The Road Ahead

- This work is still in a preliminary stage and the focus of today was to demonstrate a new capability and new strategy for HB11 and the broader pB11 community – more on Wednesday!
- More extensive parameter sweeps are necessary different ion/electron temperatures, densities, borohydride chemistries
- Currently exploring the inclusion of Li-6 to take advantage of aneutronic p-Li6 fusion and internal tritium breeding for low tritium targets
- This model can provide suprathermal enhancement factors as a function of fuel conditions, but it is inherently limited as a 0D code
 - Open to exploring 1D models or integrating some of the new collision physics into existing MC/PIC codes

And please see the talks from my colleagues!

Igor Morozov – 9am Wednesday

Numerical simulations of ignition and fusion burn wave propagation in proton-boron fuel

Anna Ghorbanpour – 11am Wednesday

Optimising proton-boron-11 fuel for fast ignition inertial fusion applications.

